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Abstract

A nanoscale continuum theory is established to directly incorporate interatomic potentials into a continuum analysis
without any parameter fitting. The theory links interatomic potentials and atomic structure of a material to a con-
stitutive model on the continuum level. The theory is applied to study the linear elastic modulus of a single-wall carbon
nanotube. The Young’s modulus predicted by this nanoscale continuum theory agrees well with prior experimental
results and atomistic studies. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Interest in carbon nanotubes continues to grow since their first discovery (Iijima, 1991; Ebbesen and
Ajayan, 1992) and the establishment of new effective methods to produce them (Thess et al., 1996). Carbon
nanotubes are cylinders of graphene with diameters from 1 to 2 nm. They have single or multiple layers of
carbon atoms in the tube thickness direction, and are called single-wall carbon nanotubes (SWNTs) and
multi-wall carbon nanotubes (MWNTs), respectively. Carbon nanotubes have the potential to be the in-
terconnects in molecular electronics, or to be transistors that are 500 times smaller than current devices.
Both MWNTs and SWNTs in bundles are complex conductors that incorporate many coupled tubes/shells
that each of which possesses either metallic (m) or semiconducting (s) electronic structures. Although s-
nanotubes can be switched on and off as field-effect transistors, no method exists yet to selectively prepare
or separate s-nanotubes from m-nanotubes. This has been seen as the primary hurdle to nanotube-based
electronics (see MRS Bulletin 26 (2001) 495-497). The recent work of Collins et al. (2001) provided a novel

*Corresponding author. Fax: +1-217-244-6534.
E-mail address: huang9@uiuc.edu (Y. Huang).

0020-7683/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(02)00186-5


mail to: huang9@uiuc.edu

3894 P. Zhang et al. | International Journal of Solids and Structures 39 (2002) 3893-3906

technique to convert MWNTs into either metallic or semiconducting conductors and to fabricate arrays of
field-effect transistors from SWNTs. This represents a major step to overcome the hurdle to nanotube-
based electronics.

Carbon nanotubes display unique coupling between the electrical properties and mechanical deforma-
tion. Tombler et al. (2000) used the tip of an atomic force microscope/microscopy (AFM) to deflect a
suspended SWNT with both ends clamped to metal electrodes. They observed that the electrical conduc-
tivity of an SWNT is reduced by two orders of magnitude upon deformation; i.e., the electrical conductivity
of an undeformed, metal-like SWNT decreases by nearly 100 times after the AFM tip deforms the carbon
nanotube. Moreover, this transformation is completely reversible since there is no change in the electrical
conductivity upon complete unloading of the AFM. This unique behavior makes carbon nanotubes an
ideal candidate for nanoscale sensors and nano-electro-mechanical systems (NEMS).

Carbon nanotubes also display superior mechanical properties and may be used as potential rein-
forcements in nanocomposite materials and many other applications (Ruoff and Lorents, 1995; Govindjee
and Sackman, 1999; Srivastava et al., 2001; Yakobson and Avouris, 2001). The deformation of an SWNT is
completely reversible (i.e., elastic) subjected to strains of more than 4% (Iijima et al., 1996; Falvo et al.,
1997; Wong et al., 1997; Hertel et al., 1998; Lourie et al., 1998; Wagner et al., 1998; Walters et al., 1999;
Tombler et al., 2000; Yu et al., 2000a). A 6-nm long SWNT with 1-nm diameter may sustain a large
compressive strain of 5% prior to buckling, and even larger strains under torsion (Yakobson et al., 1996).
Experimental investigations (e.g., Yu et al., 2000b) and atomistic studies (Yakobson et al., 1997) on fracture
of SWNTs and MWNTs showed that carbon nanotubes can sustain strains larger than 10% prior to
fracture.

There are some experimental studies of the elastic modulus of carbon nanotubes. Treacy et al. (1996)
obtained the Young’s moduli of carbon nanotubes from transmission electron microscopy (TEM) obser-
vations of the thermal vibration of an MWNT. A large variation of Young’s moduli was reported, from
0.40 to 4.15 TPa with an average of 1.8 TPa. Krishnan et al. (1998) also used TEM to observe the thermal
vibration of an SWNT at room temperature and reported Young’s moduli of SWNTs in the range from
0.90 to 1.70 TPa, with an average of 1.25 TPa. Wong et al. (1997), Salvetat et al. (1999) and Tombler et al.
(2000) used AFM to bend an MWNT, nanoropes of SWNTs and a single SWNT, respectively. A large
variation of Young’s modulus was also reported for MWNTs (0.69-1.87 TPa) by Wong et al. (1997), while
the Young’s modulus was 0.6 TPa for nanoropes of SWNTs (Salvetat et al., 1999) and 1.2 TPa for SWNTs
(Tombler et al., 2000). Yu et al. (2001a,b) conducted nanoscale tensile tests of an MWNT pulled by AFM
tips under a scanning electron microscope. The Young’s moduli of MWNTs ranged from 0.27 to 0.95 TPa.
The scanning force microscopy characterization of individual carbon nanotubes on electrode arrays under
bending gave the Young’s modulus of MWNTs as 1 TPa (Muster et al., 1998), while the micro-Raman
spectroscopy study of carbon nanotubes under cooling-induced compression provided an estimate of the
Young’s modulus from 2.8 to 3.6 TPa for SWNTSs, and 1.7 to 2.4 TPa for MWNTs (Lourie and Wagner,
1998). Contrary to these microscopy studies, Pan et al. (1999) measured directly the Young’s modulus from
the tensile tests of ropes of very long and aligned MWNTSs, and reported much lower Young’s moduli from
0.22 to 0.68 TPa.

There are also extensive atomistic studies to investigate the Young’s modulus of carbon nanotubes.
Robertson et al. (1992) used the molecular dynamics with the interatomic potential for carbon (Tersoff,
1988; Brenner, 1990) and local density functional to study an SWNT and reported a Young’s modulus
around 1.02 TPa. The interatomic potential of Tersoff (1988) and Brenner (1990) has also been used in
other molecular dynamics studies of SWNTs, and a large variation of Young’s moduli has been reported
(e.g., 1.07 TPa by Yakobson et al. (1996); 0.8 TPa by Cornwell and Wille (1997); 0.44-0.50 TPa by Hal-
icioglu (1998)). There are also molecular dynamics studies using other interatomic potentials, such as the
Keating potential, summation of pairwise harmonic potentials, and the potential accounting for both bond
stretching and bond angle changes adopted by Overney et al. (1993), Lu (1997) and Prylutskyy et al. (2000),
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respectively. The corresponding Young’s modulus is 1.5 TPa (Overney et al., 1993), 0.97 TPa (Lu, 1997),
and 1.1-1.2 TPa (Prylutskyy et al., 2000). Lu (1997) also obtained slightly larger Young’s moduli (0.97-1.11
TPa) for MWNTSs as compared to his SWNT results. Popov et al. (2000) determined the Young’s modulus
of SWNTs to be 1 TPa from the analytical expressions for the elastic modulus for SWNTSs which they
obtained using Born and Huang’s (1954) perturbation technique for a lattice—dynamical model of na-
notubes (Popov et al., 1999). Similar to the large variations of Young’s moduli obtained from molecular
dynamics simulations, the tight-binding methods also give large scattering in Young’s modulus of an
SWNT, ranging from 0.67 TPa (Molina et al., 1996) to 1.26 TPa (Hernandez et al., 1998, 1999; Goze et al.,
1999; Vaccarini et al., 2000). There are also first-principles calculations of the elastic modulus of SWNTs,
which once again give significant variations in results. Sanchez-Portal et al.’s (1999) study based on pseudo-
potential density functional theory gave Young’s moduli from 0.95 to 1.10 TPa, while Van Lier et al.’s
(2000) ab initio multiplicative integral approach yielded Young’s moduli ranging from 0.75 to 1.18 TPa.
Recently, Zhou et al.’s (2001) first-principles study based on linear combination of atomic orbitals and
molecular orbital cluster determined the Young’s modulus of an SWNT to be 0.76 TPa.

There are, however, very few continuum studies of carbon nanotubes because it is generally thought that
continuum mechanics theories are not applicable on the atomic or nanometer scale. Among these limited
continuum studies, a carbon nanotube is either modeled as a cylindrical shell (e.g., Yakobson et al., 1996;
Ru, 2000a,b, 2001), a beam (Liu et al., 2001), or many truss members (Odegard et al., 2001). Two critical
parameters in the shell model, namely the elastic modulus and shell thickness of a carbon nanotube, are
determined by fitting the tensile and bending stiffness obtained from molecular dynamics simulations
(Yakobson et al., 1996). The corresponding buckling strain and buckling mode predicted by the linear
elastic shell model for the same carbon nanotube under compression then agree reasonably well with
molecular dynamics simulations (Iijima et al., 1996; Yakobson et al., 1996).

For potential applications of carbon nanotubes in nanoelectronics, NEMS, and nanocomposite mate-
rials, it is desirable to have nanoscale continuum theories that may overcome some limitations of the
atomistic studies concerning both time scales (107>~10~° s) and length scales (10~°~10~° m). Moreover, the
future success of nanotechnology requires the development of nanoscale continuum theories that are di-
rectly linked to atomistic models or atomistic simulations. Tadmor et al. (1996a,b) and co-workers (Miller
et al., 1998a,b; Shenoy et al., 1998, 1999) proposed a quasi-continuum model to link atomistic simulation
with continuum analysis, where the atomistic simulation was applied over regions of relatively nonuniform
deformation while the continuum analysis was used over domains of uniform deformation. Friesecke and
James (1999) proposed an approach to pass the atomistic information to a continuum theory for a
nanostructure in which one or more dimensions are large relative to atomic scale. Gao et al. (2001) studied
dynamic fracture at the nanometer scale via both molecular dynamics simulations and continuum me-
chanics analysis. Without any parameter fitting, the continuum mechanics analysis agreed very well with
the molecular dynamics simulation even down to a few atomic spacings. This suggests that, under certain
conditions, the continuum mechanics theories are applicable on the nanometer scale.

Zhang et al. (2002a) proposed a nanoscale continuum theory that directly incorporates the interatomic
potential into the constitutive model of the solid. A systematic approach was adopted to derive the con-
tinuum strain energy density from the energy stored in the atomic bonds by averaging over the bond
orientations and distribution. Such an approach involves no parameter fitting and leads naturally to a
continuum constitutive model for nanostructured materials. Based on the interatomic potentials for carbon
(Tersoff, 1988; Brenner, 1990), Zhang et al. (2002a) applied this nanoscale continuum theory to carbon
nanotubes and studied the instability of an SWNT under uniaxial tension. Two approximations were made
to simplify the theory: (i) the interaction between the atoms was considered only via the pair potential, i.e.,
the multi-body coupling with the local environment was neglected; and (ii) the bond density function was
uniform, which gave an isotropic constitutive model within the tube surface. This nanoscale continuum
theory predicted a bifurcation strain of 52% that, without any parameter fitting, agreed well with the critical
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strain of 55% at the onset of instability of a carbon nanotube observed in molecular dynamics simulations
(Yakobson et al., 1997) using the same interatomic potential.

The purpose of the present study is to generalize Zhang et al.’s (2002a) nanoscale continuum theory
without making the above two assumptions of pair-potential-only interaction and uniform bond density
function. The interaction between a pair of carbon atoms depends not only on the stretched bond length,
but also on the local environment (i.e., atoms outside the pair), as characterized by the Tersoff’s (1988) and
Brenner’s (1990) interatomic potential summarized in Section 2. A nanoscale continuum theory for carbon
nanotubes is established in Section 3 for the noncentrosymmetric, hexagonal lattice structure of graphite
and carbon nanotube. The elastic modulus of carbon nanotubes are obtained in Section 4, and are com-
pared with the aformentioned experimental data and atomistic simulations.

2. Interatomic potential for carbon

Tersoff (1988) and Brenner (1990) determined the interatomic potential for carbon as
V(ry) = Vr(ry) — ByVa(ry), (1)

for atoms i and j, where #;; is the distance between atoms i and j, V& and Vj are the repulsive and attractive
pair terms given by

D .

Va(r) = e VIR £ (), 2)
S—1
D@S .

A = 5o VRO, ()
S—1

the parameters D', S, B, and R® are determined from the known physical properties of carbon, graphite
and diamond, and are given at the end of this section; the function f; is merely a smooth cutoff function to
limit the range of the potential, and is given by

1 r< R,
folr) = %{1 + cos [;E;%I;U(H} RY <y < R®), (4)
0 r > R®),
which is continuous and has a cutoff of R® = 0.2 nm and R") = 0.17 nm to include only the first-neighbor

shell for carbon.
The parameter B;; in (1) represents a multi-body coupling between the bond from atom i to atom j and
the local environment of atom i, and is given by

-6

%=1+ZG%mmﬂ7 (5)
k (#i,))

where ry 1s the distance between atoms i and k, f; is the cutoff function in (4), 0, is the angle between bonds

i—j and i—k, and the function G is given by

G(@) = Ay

149 i (6)
dy 2+ (14cos0) |

For atoms i and j having different local environment, Brenner (1990) suggested to replace the coefficient

By = (B; + B;)/2. (7
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Fig. 1. A schematic diagram of the atomic structure of a graphite or carbon nanotube within the tube surface.

The parameters D), S, f and R in (2) and (3), J in (5), and ay, ¢, and d, in (6) have been determined by
Brenner (1990) to fit the binding energy and lattice constants of graphite, diamond, simple cubic and face-
centered-cubic structures for pure carbon, as well as the vacancy formation energy for diamond and
graphite. In fact, Brenner (1990) gave two sets of parameters for carbon,

(I) D =6325eV, S=129, B=15nm™', R® =0.1315 nm;
— 0.80469: 8)
a = 0.011304, ¢y =19, dy=2.5:

and

(II) D© =6.000eV, S=122, f=21nm"', R =0.1390 nm;
8 = 0.50000; (9)
ao = 0.00020813, ¢, =330, dy=23.5.

An SWNT has a hexagonal atomic structure within the tube surface, as shown in Fig. 1. The equilibrium
bond length, denoted by /[y, is determined by minimizing the interatomic potential, or equivalently, by
enforcing the force to vanish in each atomic bond i—j,
or

=0

a}"ij

(10)

This gives the equilibrium bond length as /, = 0.142 and 0.145 nm for the two sets of parameters (8) and (9),
respectively. Both results agree reasonably well with the well-known bond length of graphite (0.144 nm).

3. A nanoscale continuum theory for materials with noncentrosymmetric atomic structure

Fig. 2 shows a schematic diagram of the multi-scale approach adopted by Zhang et al. (2002a) to es-
tablish a nanoscale continuum theory from the interatomic potential and the atomic structure of the
material. Such an approach has also been used by Gao and Klein (1998), Klein and Gao (1998, 2000) and
Zhang et al. (2002b) to incorporate an empirical cohesive force law into the constitutive model of solids.
Each material point on the continuum level is surrounded by a small representative cell within which the
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Fig. 2. A multi-scale framework to establish a nanoscale continuum theory from the interatomic potential and the atomic structure of
the material.

deformation is uniform. The strain energy density on the continuum level is evaluated by the bond energy
on the atomic level for all atomic bonds in the cell, i.e., by the so-called Cauchy-Born rule (e.g., Milstein,
1980; Tadmor et al., 1996a). This approach is first reviewed in the following for materials with centro-
symmetric atomic structure and pair or multi-body interatomic potentials. It is then generalized for ma-
terials with noncentrosymmetric atomic structure (e.g., carbon nanotubes).

3.1. Materials with centrosymmetric atomic structure and pair interatomic potential

Let E denote the Lagrangian strain tensor on the continuum level, and r ) and n ) the unstretched bond
length and unit vector in the initial bond orientation for atoms i and j at equlhbrlum, respectively. The
stretched bond length after the strain E is imposed becomes

Py = \/1+2n E-n,(.;)). (11)

The energy stored in the bond between atoms i and j is denoted by ¥V (r;;), where V is the pair interatomic
potential. The strain energy stored in the representative cell is ) ,_ ; V (r;;), where the summation is over all
atomic bonds within the cell. The strain energy density at this material point on the continuum level is then
related to the interatomic potential V' by

1 2 .. V Fij
125, V) )
Q.
where the factor 1/2 comes from the equal splic of bond energy to each atom, Q. is the volume of the
representative cell. The second (symmetric) Piola—Kirchhoff stress T is the work conjugate of the
Lagrangian strain E, and is obtained from (12) by
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2,0,
r= aE 29 M M (13)

which is related to the Lagrangian strain E via the stretched bond length 7; in (11).
3.2. Materials with centrosymmetric atomic structure and multi-body interatomic potential

It should be pointed out, however, that the energy stored in the bond between atoms i and j may also
depend on the atoms outside the pair, i.e., it is described by a multi-body interatomic potential

V= V(ri/;rikvei/kak # ivj)v (14)

where k denotes all atoms outside the pair i—j, ry = ri (1 + 2n,k ‘E-n! ")/ is the stretched bond length
between atoms i and k; 0;; is the angle between deformed bonds i—j and i—, and is given by

2
r —|—rlk =Ty

(15)

cos O = 2V,,hk
and ry = r (1 + 20 i - E - njk )l/ . An example of the multi-body interatomic potentials is given in (1) for
carbon (Tersoff 1988 Brenner, 1990), where the multi-body interaction comes into play via the coefficient
By;. Zhang et al. (2002a) estimated B;; to be 0.96 for a graphite structure or carbon nanotube, and therefore
approximated it by unity such that the interatomic potential then became a pair potential, i.e., V' = V(ry).
Such an approximation is removed in the present analysis in order to accurately account for the multi-body
interaction of carbon atoms in a nanotube. Accordingly, the strain energy density is given by

> Vg ries O, k # 1, )

W= 0 : (16)
and the second Piola—Kirchhoff stress becomes
ow 1 oV ( ov 00
T=_—-=- i n,’'n; + . ) (17)
OE Q( <7 ar,j Tij ;lj ar,k I"l' k k ;1/ aeijk OF

where 00, /OE is obtained from (15).
3.3. Materials with noncentrosymmetric atomic structure

It must be pointed out that the Cauchy—Born rule linking the continuum strain energy density to the
interatomic potential requires the atomic structure of the solid to have centrosymmetry. The graphite
structure of a carbon nanotube clearly does not meet this requirement. Rigorously speaking, one cannot
simply apply the Cauchy—Born rule to a carbon nanotube since a “homogeneously deformed” carbon
nanotube on the representative cell level may undergo inhomogeneous deformation inside the cell. In fact,
Klein (1999) showed that the inappropriate use of the Cauchy-Born rule for a material with noncentro-
symmetric microstructure may lead to completely unphysical and incorrect results. In order to overcome
this limitation, Zhang et al. (2002a) approximated the hexagonal graphite wall of a nanotube by a com-
parison medium having randomized bond structure but identical mass density and Young’s modulus as the
graphite. This was achieved by taking a uniform and isotropic bond density function such that the com-
parison medium has the centrosymmetry required by the Cauchy—Born rule. Such an approximation is
removed in the present study of an SWNT, as discussed in the following.

Even though the hexagonal lattice of a graphite sheet does not possess centrosymmetry, it can be de-
composed to two sub-lattices marked by 4 and B shown in Fig. 1, and each sub-lattice has a triangular
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lattice structure and possesses centrosymmetry. Let F denote the uniform deformation gradient on the
continuum level at an arbitrary point 7 in the sub-lattice 4. Another arbitrary point i* in the same sub-
lattice A moves to F - Rfﬁ) after the deformation, where Rf.lg) is the vector from points i to i* in the initial,
undeformed configuration. Besides being subjected to the same deformation gradient F, the sub-lattice B
may also undergo a rigid body translation with respect to the sub-lattice 4. Without losing generality, this
translation may be written as F - € such that any point j in the sub-lattice B moves to

F-RY+F-&=F- (R +¢), (18)

after the deformation, where Rg)) is the vector from points 7 to j in the initial, undeformed configuration,
and the vector £ is to be determined by the minimization of the strain energy density, as discussed later. The
stretched length of bond i—;j after the deformation then becomes

ry = \/(R,F.}” + c) FT.F. (Rf.;” n c) = \/(R,_(.}” + 5) (I +2E)- (Rg” +§), (19)

where the Lagrangian tensor E is related to the deformation gradient F by E = % (F T'F-1I ), and I is the
second-order identity tensor.

The strain energy density W is related to the multi-body interatomic potential V" via (16). For a graphite
structure in Fig. 1, the representative cell surrounding each atom in the sub-lattice A4 includes only three
neighboring atoms in the sub-lattice B such that the strain energy density W becomes

_ Zlg,‘<3 V(rre, O, k # )
N 20, ’

/4

(20)

where the subscript i (as in (16)) has been omitted since there is only one (central) atom from sub-lattice 4
in the representative cell, V is the interatomic potential for carbon given in (1),

Q. = ¥ 2, (21)
Iy 1s the unstretched bond length for a graphite structure at equilibrium and is given at the end of Section 2,
r, = lo\/ (n" +x) - (1 +2B) - (1 +x), (22)
= 10\/ (nfj” n x) (I +2E)- (nﬁj” + x), (23)
ri = Ioy/ny) - (1 +2E) -y, (25)

”J(p) and nﬁto) are the unit vectors from the central atom in the sub-lattice A to the neighboring atoms j and k
in the sub-lattice B, and x = &//, is the normalized vector of the rigid body translation between the two
sub-lattices 4 and B. The atoms j and k are both within the sub-lattice B such that its stretched bond length
ri does not involve the vector x.

For a given deformation gradient F (or equivalently the Lagrangian strain E), the vector x related to the
rigid body translation between two sub-lattices 4 and B is determined by minimizing the strain energy
density W with respect to x, i.e.,
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ow
A 26
ox ’ ( )
which gives
oy (1 +2E)- (1" + %) py o UEr (" +) 45 O 27)
1573 arj Ki i al’k 'k =y 60/k Ox ’

where 060, /0x is obtained from (24) (and Or;/0x = 0). The above nonlinear equation needs to be solved
numerically in order to determine x in terms of the Lagrangian strain E, i.e., x = x(E), and the strain
energy density can then be written as W = W|E, x(E)]. It is straightforward to verify that x =0 once E =0
(i.e., no deformation).

The second Piola—Kirchhoff stress T is related to the Lagrangian strain E from the total derivative D of
strain energy density W,

DW oW oW ox oW | v or; Z oV n |~ OV x|

_oW_oW oW ox oW _ 28
DE OE ox OE OE 20 o, 3E 2= o OE — 30 OF (28)

€1<<

where the fact 017 /0x = 0 in (26) has been used, 0r;/0E, Or;/OE and 00, /OE are obtained from (22)—(24),
respectively. For an arbitrary strain E, the above equation gives the stress T, i.e., it provides the constitutive
law of SWNTs under mechanical deformation. The constitutive law, together with the equilibrium equation
and boundary conditions, provide a nanoscale continuum theory incorporating interatomic potentials.
The stress increment 7 is related to the strain increment E via the incremental modulus tensor C,

T=C:E, (29)

DT D [ow +D ow 6x+@W D /ox (30)
~ DE DE\OE DE\ 0x / OE 0x DE\QJE)’
The last two terms of the right-hand side of (30) vanish because of 0/ /0x = 0 in (26) and its derivative
D/DE(0W /0x) = 0. Therefore,

where

D (owy_@w @ o a1)
0E /] QOEOE 0E0x OFE’

where Ox/OE is obtained from the total derivative of 0% /0x = 0 in (26),
Fw W x

ox0F " oxox OF (32)
Its substitution into (31) yields
@ & ew N\ oew
C=3EoE aEox (6x6x) OxOE° (33)

It can be verified that the stress and modulus established above in terms of the interatomic potential also
hold if an atom in the sub-lattice B is taken as the central atom surrounded by three neighboring atoms in
the sub-lattice A. This is because the local environment of atoms in the sub-lattices 4 and B are the same.
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4. Elastic modulus of single-wall carbon nanotubes

A nonlinear nanoscale continuum theory incorporating interatomic potentials is established in the
previous section. The linear elastic modulus of an SWNT can be obtained from this nonlinear continuum
theory by taking a vanishing deformation in (33), E = 0. It can be verified straightforwardly from (27) that,
for E = 0, the vector x corresponding to the rigid body translation between the two sub-lattices vanishes,
x =0, and so does the second Piolo—Kirchhoff stress T, T = 0, determined from (27).

The linear elastic modulus tensor is obtained from (33) by
—1
oW

¢= "ox0E

OEOE OEox \ 0xox (34)

r*w W (62W>

E=0,x=0

The second-order derivatives of the strain energy density /¥ on the right-hand side of (34) can be expressed
in terms of the first- and second-order derivatives of the interatomic potential ¥ in (1) as well as the first-
and second-order derivatives of deformed bond lengths and angle r;, r, and 0 in (22)—(24). The lengthy and
tedious expressions of the derivatives are not presented here except two first-order derivatives of the in-
teratomic potential V,

y
() o (Y) = -
O ) ggx—o Ory E=0,x=0

Let Z denote the axial direction of an SWNT, and 6 the circumferential direction. The nonvanishing
components of the linear elastic modulus tensor in (34) are denoted by Czzz7, Coppp and Crzg9 = Cyyzz. For
simple tension along the axial direction Z of the tube, the Young’s modulus is given by

CZ
E - CZZZZ - CZE:: . (36)

It does not depend on the chirality of a carbon nanotube (Saito et al., 1998) because three uniformly spaced
atomic bonds attached to each atom give an isotropic linear elastic modulus tensor C within the tube
surface. This is, in fact, consistent with the molecular dynamics simulations (e.g., Lu, 1997).

It should be pointed out, however, that the elastic modulus tensor C in (34) and Young’s modulus F in
(36) for an SWNT are actually the linear elastic tensile stiffness rather than the modulus, i.e., they are the
modulus multiplied by the tube thickness. It can be verified that the dimensions of C and E are Newton/
meter (rather than N/m?). This is because, though the interatomic potential J has the dimension of energy
(eV = 1.6 x 107" Nm), the “volume” of the representative cell Q, in (21) is in fact the average area (rather
than volume) per atom. In other words, the strain energy density W in (20) is the strain energy per unit tube
surface area of an SWNT.

We have calculated the linear elastic tensile stiffness in (36) along the axial direction of an SWNT for the
two sets of parameters (8) and (9) of the interatomic potential of carbon (Brenner, 1990). The resulting
tensile stiffness is 159 N/m for the first set of parameters (8), and 236 N/m for the second set (9). While these
two sets of parameters give the same binding energy and lattice constants for carbon (e.g., graphite, dia-
mond), it is a bit puzzling that they predict different tensile stiffness for an SWNT. Moreover, which one
agrees better with the experimental data and with atomistic studies of SWNTSs?

As Brenner (1990) pointed out, each set of parameters in the interatomic potential was determined by
fitting the binding energy and lattice constants of graphite, diamond and other possible atomic structures of
pure carbon. The binding energy is directly related to the interatomic potential, while the lattice constants
are the bond length at equilibrium, which are directly linked to the first-order derivatives of the interatomic
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potential. Little or essentially no attention was paid to the second-order derivatives of the interatomic
potential, but these second-order derivatives are closely related to the elastic moduli of graphite and dia-
mond. Therefore, for the same binding energy and lattice constants of carbon, different methods of fitting
give different sets of parameters in the interatomic potential (Brenner, 1990), which lead to different pre-
dictions of the tensile stiffness as shown above.

The Young’s modulus of an SWNT can be obtained from the linear elastic tensile stiffness in (36) divided
by the nanotube thickness /. This is consistent with the molecular dynamics calculations of the Young’s
modulus (e.g., Yakobson et al., 1996; Yakobson and Avouris, 2001). A common estimate of the nanotube
thickness is the monoatomic layer thickness 4 = 0.335 nm, though this estimate is more suitable for
MWNTs than for SWNTs (Yakobson and Avouris, 2001). For the first set of parameters (8) of the in-
teratomic potential for carbon, the Young’s modulus is 159 N/m/0.335 nm = 475 GPa, which is lower than
those reported in most experimental and atomistic studies of SWNTs, and agrees only with Halicioglu’s
(1998) molecular dynamics calculations. The Young’s modulus calculated from the second set of param-
eters (9) of the interatomic potential for carbon is 236 N/m/0.335 nm = 705 GPa. This falls in the range of
Young’s modulus reported by most experimental and atomistic studies of SWNTs (e.g., Molina et al., 1996;
Cornwell and Wille, 1997; Salvetat et al., 1999; Van Lier et al., 2000; Zhou et al., 2001), but is either higher
or lower than other reported Young’s modulus. In particular, it agrees well with the molecular dynamics
calculations of Cornwell and Wille (1997) using the same interatomic potential (Tersoff, 1988; Brenner,
1990).

The Young’s modulus of an SWNT calculated from the present nanoscale continuum theory based on
the second set of parameters in (9) of the interatomic potential of carbon agrees reasonably well with the
experimental and atomistic studies of SWNTs.

5. Concluding remarks

A nanoscale continuum theory has been established to directly incorporate the interatomic potential into
the continuum analysis of the solids. Once the interatomic potential and the atomic structure of the ma-
terial are known, a systematic approach, which does not involve any parameter fitting, has been proposed
to link the constitutive model on the continuum level to the interatomic potential of the material with the
centrosymmetric atomic structure. We have applied this nanoscale continuum theory to study the elastic
modulus of an SWNT based on the interatomic potential of carbon (Tersoff, 1988; Brenner, 1990). The
atomic structure of an SWNT, however, does not possess the centrosymmetry such that the above approach
must be modified based on energy minimization. The linear elastic modulus of an SWNT predicted by the
present nanoscale continuum theory based on the interatomic potential (1) and (9) for carbon (Brenner,
1990) agrees reasonably well with the available experimental and atomistic studies.

It should be pointed out that the present approach to establish a nanoscale continuum theory is not
limited to SWNTs; it can also be applied to other nanostructured materials once the interatomic potential
and the atomic structure of the material are known. In fact, the present approach is not limited to materials
with known interatomic potentials since other atomistic studies that provide energy in atomic bonds can be
similarly incorporated in the present nanoscale continuum theory.
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